Tag Archives: Dental Handpiece

  • Quick Tip Tuesday #2

    Happy Tuesday! It is time for our second dental quick tip. Today's tip is about your handpieces. Do you have a maintenance routine that works well for you and your practice?

    Quick-Tip-Tuesday #2Lubricating your handpieces is imperative to keeping them running properly. Want to see more handpiece maintenance Q & A? Check out our page on handpieces here. Our Practice Tips #9 will, also, help explain more about taking care of your handpiece properly.

  • Practice Tips #72: Motors, Attachments, and Handpieces; Oh My! Part 2: Attachments

    Part 2: Attachments for Slow-speed Handpieces

    There are 2 basic types of attachments used with slow-speed motors: nosecones and contra angles.

    A nosecone is a straight attachment that will accept a slow-speed bur or a shaft-driven angle (contra angle or prophy angle). Nosecones are unique and come with different gear ratios. The default is a 1:1 ratio – the nosecone will operate at the same speed as the motor. 4:1 is a common gear reduction, the nosecone will spin at ¼ the speed of the motor. Some nosecones (primarily those designed for use with electric motors) will also have speed increasing gears, so they will operate at a 1:5 gear ratio (for example), or 5 times the output speed of the motor.

    Nosecones are standardized so they all will accept the same diameter bur or shaft driven attachment. Nosecones also incorporate a pin of some sort to prevent rotation of any shaft driven attachment placed on the nosecone. All shaft driven attachments have a groove that slides over this pin.

    latching-grooveAs nosecones can accept a slow-speed bur, all you may need to perform a particular procedure may be a motor and nosecone (and bur, of course).

    The other type of attachment, a contra angle, will work with gear driven attachments only (most commonly some sort of head). They will not accept a bur, so further attachments are required. As the name implies, a contra angle provides an angle for the next attachment which can improve intra-oral access.

    Both Midwest and E-type contra angles accept the same type of gear driven heads. The heads incorporate a drive shaft with a gear at the end that seats into the contra angle meshing with the internal drive shaft causing the head to spin. The drive gear has pointed teeth making it easier to seat the two halves together. The head also has square “teeth” under a threaded collar that mesh with the square “teeth” on the outside of the contra angle. These teeth hold the head onto the contra angle and prevent the entire head from spinning (so only the drive shaft spins). It is these teeth that one must count to determine compatibility between a head and contra angle. Heads and contra angles come with either 12 or 14 locking teeth.

    attachment teethStar systems do not normally use a contra angle attachment. Instead, they use a straight attachment which accepts a Star-specific head. Star heads have an elbow incorporated at the end to provide the angle normally provided by a contra angle attachment as used by other systems.

    elbow attachmentAmerican Dental Accessories, Inc. also has an after-market contra angle that will work with a Star-type motor. This angle will allow you to use standard heads with your Star system (which can save money over the more costly Star-specific heads).

    Contra Angle (#25-509)

    Regardless of system, a contra angle (or angle attachment) will require a 3rd attachment for use with a rotary instrument and will not be a complete set-up for a given procedure (as a motor and nosecone alone can be).

    Finally, there are heads. As mentioned above, heads will have both drive teeth and attachment teeth (or drive teeth and a threaded elbow). The number of attachment teeth will determine compatibility with a particular contra angle. The head will accept the rotary instrument with which one will perform a given procedure. The most common head is a latch head which will accept a latch (or RA, for “Right Angle”) bur. RA burs have a groove at the end into which the latch of the head will secure holding the bur in. Some heads also accept standard friction grip burs, exactly as used in a high-speed handpiece.

    Other heads are designed only to accept prophy cups. Prophy cups can come with either a threaded “screw on” shaft or that simply “snap on” a knob designed for this purpose. Some are also attached to a standard latch-type shaft so they’ll work in a standard latch head.

    Snap-on, Screw-on, & Latch-type Prophy Brush & Cups

    The flexibility afforded by the various head configurations allows for a tremendous range of applications for a slow-speed set-up. This flexibility can allow for great value with a slow-speed system.

  • Practice Tips #71: Motors, Attachments, & Handpieces; Oh My! - Part 1

    Episode 1 - Motors

    There are a significant number of handpiece brands on the market and various terms are thrown out to refer to the different slow-speed handpieces and components available. Names like “attachment” or “contra angle” or “handpiece” can all be used to refer to the same thing. No wonder so many practitioners are often confused.

    Most slow-speed handpiece systems consist of a separate motor and various attachments. The motor provides the force to drive whatever type of rotary instrument will be used for a given procedure. The motor will not directly accept any type of rotary instrument (e.g. burs). Most motors operate at a given maximum rpm -- 20k and 5k being the most common speeds available.

    Motors come in three primary “types”:

    E-TYPE This is the most common type of slow-speed motor and is the closest to a “universal” type on the market. Most house brand slow speeds use an E-type motor. NSK is one of the best known name brands to use an E-type motor. Most electric motors are also E-type motors and will accept any E-type attachments. E-type motors primarily rely on friction to hold any attachments on using o-rings and a “split ring”. Some E-type motors (long shaft- #15-105 & #15-113) also incorporate an attachment lock to further secure the attachment.


    Some common brand names associated with E-type motors and attachments are: NSK, Lynx, Micro Mega, Medidenta, American and Champion, although there are many others.

    STAR TITAN or "T" TYPE Star Dental has a proprietary system they use for their motors and attachments. As it is a proprietary system it will only work with components designed to work within it (ie: You cannot use components designed for a Star Titan with an E-type or Midwest Shorty (see below) component or vice versa). The Star systems use a short shaft on the motor with a groove and attachments with a spring-loaded collar covering ball bearings that seat into the groove on the motor shaft.


    MIDWEST SHORTY & RHINO Midwest motors use their own proprietary attachment system. The end of the motor is recessed allowing the attachment to seat into the motor housing. The motor also incorporates a locking lever that clips onto a lip at the end of the attachment to hold it on the motor. As with the Star type, Midwest compatible components will only work with other components specifically designed for this system.


    All of these motors are available in different speeds or speed combinations (some Midwest motors are available in a 2 speed configuration and the user can select the speed of the motor before operating it). The speed of the motor will dictate the speed of the rotary instrument but can be affected by the attachment (q.v.).

    The first step in procuring a slow-speed system or component should always be determining what type of motor you have so that you can get components that will be compatible with it.

    An attachment is the next component in the series and will attach directly to the motor. Attachments come in two primary types: nosecones and contra angles. We’ll discuss attachments in next month’s episode.